Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa.
نویسندگان
چکیده
Cyclin-dependent kinases (CDKs) function as central regulators of both the cell cycle and transcription. CDK activation depends on phosphorylation by a CDK-activating kinase (CAK). Different CAKs have been identified in budding yeast, fission yeast, and metazoans. All known CAKs belong to the extended CDK family. The sole budding yeast CAK, CAK1, and one of the two CAKs in fission yeast, csk1, have diverged considerably from other CDKs. Cell cycle regulatory components have been largely conserved in eukaryotes; however, orthologs of neither CAK1 nor csk1 have been identified in other species to date. To determine the evolutionary relationships of yeast and metazoan CAKs, we performed a phylogenetic analysis of the extended CDK family in budding yeast, fission yeast, humans, the fruit fly Drosophila melanogaster, and the nematode Caenorhabditis elegans. We observed that there were 10 clades for CDK-related genes, of which seven appeared ancestral, containing both yeast and metazoan genes. The four clades that contain CDKs that regulate transcription by phosphorylating the carboxyl-terminal domain (CTD) of RNA Polymerase II generally have only a single orthologous gene in each species of yeast and metazoans. In contrast, the ancestral cell cycle CDK (analogous to budding yeast CDC28) gave rise to a number of genes in metazoans, as did the ancestor of budding yeast PHO85. One ancestral clade is unique in that there are fission yeast and metazoan members, but there is no budding yeast ortholog, suggesting that it was lost subsequent to evolutionary divergence. Interestingly, CAK1 and csk1 branch together with high bootstrap support values. We used both the relative apparent synapomorphy analysis (RASA) method in combination with the S-F method of sampling reduced character sets and gamma-corrected distance methods to confirm that the CAK1/csk1 association was not an artifact of long-branch attraction. This result suggests that CAK1 and csk1 are orthologs and that a central aspect of CAK regulation has been conserved in budding and fission yeast. Although there are metazoan CDK-family members for which we could not define ancestral lineage, our analysis failed to identify metazoan CAK1/csk1 orthologs, suggesting that if the CAK1/csk1 gene existed in the metazoan ancestor, it has not been conserved.
منابع مشابه
The plant-specific kinase CDKF;1 is involved in activating phosphorylation of cyclin-dependent kinase-activating kinases in Arabidopsis.
Cyclin-dependent kinases (CDKs) play essential roles in coordinate control of cell cycle progression. Activation of CDKs requires interaction with specific cyclin partners and phosphorylation of their T-loops by CDK-activating kinases (CAKs). The Arabidopsis thaliana genome encodes four potential CAKs. CAK2At (CDKD;3) and CAK4At (CDKD;2) are closely related to the vertebrate CAK, CDK7/p40MO15; ...
متن کاملCdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs)
Cyclin-dependent kinases (Cdks) are fully active only when phosphorylated by a Cdk-activating kinase (CAK) [1]. Metazoan CAK is itself a Cdk, Cdk7, whereas the CAK of Saccharomyces cerevisiae is a distinct enzyme unrelated to Cdks [1]. The Mcs6-Mcs2 complex of Schizosaccharomyces pombe is a putative CAK related to the metazoan enzyme [2] [3]. Although the loss of Mcs6 is lethal, it results in a...
متن کاملA distinct cyclin-dependent kinase-activating kinase of Arabidopsis thaliana.
The activation of cyclin-dependent kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop catalyzed by CDK-activating kinases (CAKs). Thus far no functional CAK homologue has been reported in plants. We screened an Arabidopsis cDNA expression library for complementation of a budding yeast CAK mutant. A cDNA, cak1At, was isolated that suppressed the CAK mutation in budd...
متن کاملThe CDK-Activating Kinase (CAK) Csk1 Is Required for Normal Levels of Homologous Recombination and Resistance to DNA Damage in Fission Yeast
BACKGROUND Cyclin-dependent kinases (CDKs) perform essential roles in cell division and gene expression in all eukaryotes. The requirement for an upstream CDK-activating kinase (CAK) is also universally conserved, but the fission yeast Schizosaccharomyces pombe appears to be unique in having two CAKs with both overlapping and specialized functions that can be dissected genetically. The Mcs6 com...
متن کاملHuman and yeast cdk-activating kinases (CAKs) display distinct substrate specificities.
Cell cycle progression is controlled by the sequential functions of cyclin-dependent kinases (cdks). Cdk activation requires phosphorylation of a key residue (on sites equivalent to Thr-160 in human cdk2) carried out by the cdk-activating kinase (CAK). Human CAK has been identified as a p40(MO15)/cyclin H/MAT1 complex that also functions as part of transcription factor IIH (TFIIH) where it phos...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 17 7 شماره
صفحات -
تاریخ انتشار 2000